These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

Entropy (S) - A Spontaneous process where energy goes from being more concentrated to being more dispersed, the system is more stable!

Enthalpy (H) - The sum of the internal energy of the system and the product of its pressure and volume

Solution is a homogeneous mixture of 2 or more substances
Solvent - present in the largest amount
Solute - present in the smaller amount
Rule of thumb, "like dissolves like" by analyzing the solution process in terms of forces overcome in the solute and solvent and forces formed between solute and solvent particles.

Colligative Properties are properties of solutions that depend only on the number of solute particles per solvent molecule and not the identity of the solute

Concentration - number of ions of solute per molecule of solvent

$$
\begin{array}{ll}
\text { Molality }-\mathrm{m} & \mathbf{m}=\text { Moles of Solute } / \mathrm{Kg} \text { of Solvent } \\
\text { Mole Fraction }-\mathrm{X} & \mathbf{X}=\mathrm{n}_{\mathrm{A}} / \mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{C}}+\ldots \\
\text { Weight Percent }=\mathrm{Wt} \% & \mathbf{W t} \%=100 \%{ }^{*} \operatorname{Mass}_{\mathrm{A}} / \operatorname{Mass}_{\mathrm{B}}+\operatorname{Mass}_{\mathrm{C}}+\operatorname{Mass}_{\mathrm{D}}+\ldots
\end{array}
$$

Wt \% used in consumer products: Vinegar $=5 \%$ acedic acid, Bleach $6.00 \% \mathrm{NaOCl}$
Flask on Right: $\mathrm{o} .100 \mathrm{~mol} \mathrm{K2CrO} 4$ and water to make $1.000 \mathrm{~L}=0.100 \mathrm{Molar}=\mathrm{M}$ Flask on Left: 0.100 mol of $\mathrm{K}_{2} \mathrm{CrO} 4$ and 1.00 Kg of $\mathrm{HOH}=0.100 \mathrm{Molal}=\mathrm{m}$

Molarity and Molality of a solution are not the same!

EXAMPLE 14.1 Calc All. 1.2 kg ethylene glycol, $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$ antifreeze in 4.0 kg water
You need to show the calculation of the Mw of ethylene glycol to the correct SD with units!

Mw Ethylene Glycol
2 C 2 * $12 / 01 \quad 24.02$
$2 \mathrm{O} \quad 2$ * $16.00 \quad 32.00$
$6 \mathrm{H} \quad 6^{*} 1.008 \quad 6.048$
62.068 Correct for Sig Fig $62.07 \mathrm{~g} / \mathrm{Mole}$

Mw Water H2O

$2 \mathrm{H} \quad 2$ * $1.008 \quad 2.016$
$1 \mathrm{O} \quad 1^{*} 16.00 \quad 16.00$
18.016 Correct for Sig Fig 18.02 g/Mole

Ethylene Glycol $\quad 1.2 \mathrm{~kg} / 62.07 \mathrm{~g} / \mathrm{mole}=19.333 \mathrm{~mol}=\mathbf{1 9} . \mathbf{M o l}$
(Note SD!)
$4.0 \mathrm{~kg} / 18.02 \mathrm{~g} / \mathrm{mol}=221.97 \mathrm{~mol}=220 \mathrm{~mol}=\mathbf{2 . 2} \times \mathbf{1 0}^{2} \mathbf{~ m o l}$
Molality $=\mathbf{m}=$ 19 mol ethylene glycol $/ 4.0 \mathrm{~kg}$ water $=4.8 \mathrm{~m}$
Mole Fraction $=\mathbf{X}=19 \mathrm{~mol}$ ethylene glycol $/ 19 \mathrm{~mol}+220 \mathrm{~mol}=0.080 \mathrm{MF}$
Wt\% =
($1.2 \mathrm{~kg} / 1.2 \mathrm{~kg}+4.0 \mathrm{~kg}$) ${ }^{*} 100 \%=23 \%$

14.2 The Solution Process

Saturated Solution a solution in which the maximum amount of solute has been dissolved. There usually are sold particles of the solute visible.

Is a Dynamic Equilibrium $\quad \mathrm{CuCl}_{2(\mathrm{~s})} \leftarrow \rightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$ Concentration of solute is in equilibrium with undissolved solute in a Sat Soln.

Super Saturated Solution: a solution that temporarily contains more solute than the saturated amount. There are no sold particles of the solute visible.

And example is to add lots sugar to water, heat the solution to dissolve all of the sugar. Let it cool without being disturbed. Hang a cotton string into the solution, sugar crystals (old fashion sugar candy) will grow on the string.

Liquid dissolving in Liquids - like dissolves like
Solvation: the process by which a solute dissolves in a solvent
Miscible two or more liquids mix, to an appreciable amount, to form a solution
Ethanol / water - polar, hydrogen bonds - Show 3D image
Octane / CCl_{4} - both are non-polar so they mix - Show 3D image
Immiscible two or more liquids do not mix to form a solution
Octane or CCl4 / water, oil and water - non-Polar and Polar do not mix

Solids dissolving in water

Naphthalene (Non Polar) dissolves in benzene (Non Polar) or hexane (Non-Polar)

I2 (Non Polar) does not dissolve much in water (Polar), but dissolves in CCl_{4} (Non-Polar)

Entropy (S) - A Spontaneous process where energy goes from being more concentrated to being more dispersed

Enthalpy (H) - The sum of the internal energy of the system and the product of its pressure and volume (How much heat is given off as the compound dissolves - can be measured via calorimeter)

S / H are complex!"Predicting the solubility of ionic compounds in water is complicated"!
Entropy is the driving force for the solution process. When a solute dissolves in a solvent, the "energy of the system is more dispersed than in the two, separate" states.

Hydration - an ion is surrounded by water molecules
TO BE SOLUBLE An ionic compound will have an Enthalpy of Solution that is exothermic ($\Delta \mathrm{H}$ is negative) or only slightly endothermic.

Dissolving ionic KF in water. K^{+}and F^{-}are held together in the solid crystal state by attractive forces of their opposite charges.
To dissolve KF:
Takes Energy Input to separate the ions from the crystal lattice
$\mathrm{KF}(\mathrm{s}) \quad \rightarrow \mathrm{K}^{+}{ }_{(\mathrm{g})}+\mathrm{F}^{-}{ }_{(\mathrm{g})} \quad+821 \mathrm{~kJ} / \mathrm{mol}-\Delta \mathrm{H}_{\text {Lattice }}$
Energy is released as the ions are surrounded by water molecules, called Hydration
$\mathrm{K}^{+}{ }_{(\mathrm{g})}+\mathrm{F}^{-}{ }_{(\mathrm{g})} \quad \rightarrow \quad \mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}^{-}{ }_{(\mathrm{aq})} \quad-837 \mathrm{~kJ} / \mathrm{mol} \Delta \mathrm{H}_{\text {Hydration }}$
Overall Enthalpy of Solution $\left(\Delta \mathrm{H}_{\text {Solution }}\right)=-16 \mathrm{~kJ} / \mathrm{mol}$ [Exothermic] and is measured using a calorimeter.
$\mathrm{KF}(\mathrm{s}) \quad \rightarrow \mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}^{-}{ }_{(\mathrm{aq})}$

NaOH dissolving in water is strongly exothermic - gets real hot (Drano in your sink)
$\mathrm{NH}_{4} \mathrm{NO}_{3}$, a common cold pack, dissolving in water is endothermic; it gets cold as it dissolves

14.3 Factors Affecting Solubility: Pressure and Temperature

Gases dissolving in liquids - Henry's Law

The solubility of a gas is defined as the concentration of the dissolved gas in equilibrium with the substance in the gaseous state. Soft drinks have CO2, Diver getting Bent

Gas Solubility $\mathrm{S}_{\mathrm{g}}=$ Henry's Law Constant $\mathrm{k}_{\mathrm{H}}{ }^{*}$ Partial Pressure of the gas P_{g}

$$
\mathbf{S}_{\mathbf{g}}=\mathbf{k}_{\mathbf{H}} * \mathbf{P}_{\mathbf{g}}
$$

EXAMPLE 14.3 p627 What is the conc of O_{2} in water at $25^{\circ} \mathrm{C}$ at 1.0 bar, give in $\mathrm{g} \mathrm{O}_{2} / \mathrm{kg}$ solvent
$\mathrm{k}_{\mathrm{H}} \mathrm{O} 2=1.3 \times 10^{-3} \mathrm{~mol} / \mathrm{kg}$ bar
Air is $21 \% \mathrm{O} 2$, so the Partial Pressure of $\mathrm{O} 2=0.21^{*} 1.0 \mathrm{Bar}=0.21 \mathrm{Bar}$
$\mathrm{S}_{\mathrm{g}}=\mathrm{k}_{\mathrm{H}}{ }^{*} \mathrm{P}_{\mathrm{g}=}=1.3 \times 10^{-3} \mathrm{~mol} / \mathrm{kg}$ bar * $0.21 \mathrm{Bar}=0.27 \times 10^{-3}=2.7 \times 10^{-4} \mathrm{~mol} / \mathrm{kg}$
$\mathrm{g} \mathrm{O}_{2} / \mathrm{kg}$ solvent $=2.7 \times 10^{-4} \mathrm{~mol} / \mathrm{kg}{ }^{*} 32.00 \mathrm{~g} / \mathrm{mol} \mathrm{O} 2=8.64 \times 10^{-3}=8.6 \times 10^{-3} \mathrm{~g} / \mathrm{kg} \mathrm{O} 2$
Temp effect on Solubility: Le Chatelier's Principle
Gases that dissolve do so in an exothermic process
Gas + liquid solvent $\leftarrow \rightarrow$ saturated solution + heat
The solubility of all gases in water decrease with increase temperature.
"The solubility of solids in water is also affected by temperature ... no general pattern of behavior is observed"

Exploding Lakes - Lake Nyos contains dissolved CO2. At depth its at high pressure and cold.
Mentos and Coke - Mentos has many nucleation sites to help form CO 2 bubbles
14.4 Colligative Properties: properties depend on relative numbers of solute and solvent particles.

Changes in vapor pressure: Raoult's Law

VP over a the solvent over the solution is lower than over pure solvent
VP is proportional to the relative number of solvent molecules in solution
Pressure of Solvent $\mathbf{P}_{\mathrm{x}}=\mathbf{X}_{\text {solvent }}{ }^{*} \mathbf{P o}_{\text {Solvent }}$
EXAMPLE 14.4 P630 dissolve 651 g ethylene glycol, $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$ antifreeze in 1.50 kg water. What is VP of the water over the solution. VP of water at $90^{\circ} \mathrm{C}=525.8 \mathrm{~mm} \mathrm{Hg}$.
1.50 kg Water * $1000 . \mathrm{g} / \mathrm{kg}{ }^{*} 1 \mathrm{~mol} / 18.02 \mathrm{~g}=83.2 \mathrm{~mol}$

651 g EtGlycol * 1 mol / $62.07 \mathrm{~g}=10.5 \mathrm{~mol}$
$\mathrm{X}_{\text {water }}=83.2 \mathrm{~mol}$ water $/(83.2 \mathrm{~mol}$ water +10.5 mol glycol $)=0.888 \mathrm{MF}$
$P_{\text {water }}=X_{\text {water }} P_{\text {water }}=0.888 \mathrm{MF}^{*} 525.8 \mathrm{~mm} \mathrm{Hg}=407 \mathrm{~mm} \mathrm{Hg}$

Problem:

Pure iodine (105 g) is dissolved in 325 g of CCl_{4} at $65^{\circ} \mathrm{C}$. Given that the vapor pressure of CCl_{4} at this temperature is 531 mm Hg , what is the vapor pressure of the $\mathrm{CCl}_{4}-\mathrm{I}_{2}$ solution at $65{ }^{\circ} \mathrm{C}$? (Assume that I_{2} does not contribute to the vapor pressure.). Answer is 444 mm Hg - PROVE IT!

Boiling Point Elevation

Adding a solute lowers the vapour pressure, takes longer to get to 1 atm
Elevation of $\mathrm{BP}=\Delta \mathrm{T}_{\mathrm{bp}}=$ molal BP elevation constant $\mathrm{K}_{\mathrm{bp}}{ }^{*} \mathrm{~m}_{\text {solute }}$

$$
\Delta \mathbf{T}_{\mathbf{b p}}=\mathbf{K}_{\mathbf{b p}} * \mathbf{m}_{\text {solute }}
$$

What is the new vapour pressure of benzene with Z dissolved in it. Solute Z is 0.200 moles in 100. g of benzene ($\mathrm{C} 6 \mathrm{H} 6 \mathrm{mw} 78.11 \mathrm{~g} / \mathrm{mole}$). $\mathrm{P}_{\text {benzene }}$ is 400 mm Hg .

Moles of Z per kg benzene $=0.200$ moles $/ 100 . \mathrm{g}=\mathrm{X} / 1 \mathrm{~kg}$
Moles of Benzene $\quad=100 . \mathrm{g} * 1 \mathrm{~mol} / 78.11 \mathrm{~g} \quad=1.28 \mathrm{~mol}$ benzene
$\mathrm{X}_{\text {benzene }}=1.28 \mathrm{~mol} /(0.200 \mathrm{~mol}+1.28 \mathrm{~mol})=0.865$
Vapour Pressure of benzene $=\mathrm{P}_{\text {benzene }}=\mathrm{X}_{\text {benzene }}{ }^{*} \mathrm{P}^{\mathrm{o}}$ benzene $=$ $0.865 * 400 \mathrm{~mm} \mathrm{Hg}=346 \mathrm{~mm} \mathrm{Hg}$

To get Benzene to boil, you need to raise its vapour pressure to atmospheric or 760 mm Hg So, adding a solute lowers the vapour pressure thus raises the boiling point!

$\Delta \mathbf{T}_{\mathbf{b p}}=\mathbf{K}_{\mathbf{b p}}{ }^{*} \mathbf{m}_{\text {solute }}=+2.53^{\circ} \mathrm{C} / \mathrm{m}^{*}(0.200 \mathrm{~mol}$ Solute $/ 100 \mathrm{~g}$ benzene $* 1 \mathrm{~kg} / 1000 \mathrm{~g})=+5.06{ }^{\circ} \mathrm{C}$
Example 14.5 p 6320.144 g Eugenol C 10 H 12 O 2 in 10.0 g benzene, what is its BP?

10 C	$10{ }^{*} 12.01$	120.10
12 H	$12{ }^{*} 1.008$	12.096
2 O	$2{ }^{*} 16.00$	32.00
		$164.196=164.20 \mathrm{~g} / \mathrm{mole}$

Moles Eugenol $=0.144 \mathrm{~g} *(1 \mathrm{~mol} / 164.20 \mathrm{~g})=8.769 \times 10^{-4}=8.77 \times 10^{-4}$ moles
Molal Eug $=8.77 \times 10^{-4} \mathrm{~mol}$ Eug $/ 0.0100 \mathrm{~kg}$ benzene $=8.77 \times 10^{-2} \mathrm{~m}$
$\Delta \mathrm{T}_{\mathrm{bp}}=\mathrm{K}_{\mathrm{bp}}{ }^{*} \mathrm{~m}_{\text {solute }}=8.77 \times 10^{-2} \mathrm{~m} * 2.53{ }^{\circ} \mathrm{C} / \mathrm{m}=0.222^{\circ} \mathrm{C}$ not very much increase

TRY AN EXAMPLE OF ADDING 10.0 g salt (NaCl) to 1.00 L water. $\mathrm{Kbp}=+0.5121$ for water

Freezing Point Depression $=\Delta \mathbf{T}_{\mathrm{fp}}=\mathbf{K}_{\mathrm{fp}}{ }^{*} \mathbf{m}_{\text {solute }}$

The freezing point of a solution is LOWER than that of the pure solvent.
EXAMPLE 14.6 Freezing Point Depression ? mass of ethylene glycol in 5.50 kg water is needed to lower fp from $0^{\circ} \mathrm{C}$ to $-10.0^{\circ} \mathrm{C}$.
From $\Delta \mathrm{T}_{\mathrm{fp}}=\mathrm{K}_{\mathrm{fp}} * \mathrm{~m}_{\text {solute }}=\mathrm{K}_{\mathrm{fp}} *$ Molesethylene glycol $/ \mathrm{Kg}$ water
Derive This: \quad Moles ethylene glycol $=\Delta \mathrm{T}_{\mathrm{fp}}{ }^{*} \mathrm{Kg}$ solvent $/ \mathrm{K}_{\mathrm{fp}}$
$\begin{array}{ll}\mathrm{K}_{\mathrm{fp}} & =-1.86{ }^{\circ} \mathrm{C} / \mathrm{m}=-1.86{ }^{\circ} \mathrm{C} \mathrm{Kg} \text { solvent } / \text { Moles } \\ \text { Moles } & =-10.0^{\circ} \mathrm{C} * 5.50 \mathrm{~kg}_{\text {water }} /-1.86{ }^{\circ} \mathrm{C} \mathrm{Kg} \text { solvent } / \text { Moles }\end{array}$
Moles $=29.569=29.6$ moles
Grams $=$ Moles ${ }^{*} \mathrm{Mw}=29.6$ moles $* 62.07 \mathrm{~g} / \mathrm{mole}=1837.2=1840=\mathbf{1 . 8 4} \times 1 \mathbf{1 0}^{3} \mathbf{g}$

Summary

$$
\begin{array}{lll}
\Delta \mathrm{T}_{\mathrm{bp}}=\mathrm{K}_{\mathrm{bp}} * \mathrm{~m}_{\text {solute }} & \text { For boiling point elevation } \mathrm{K}_{\mathrm{bp}}>\mathrm{o} & \text { is positive } \\
\Delta \mathrm{T}_{\mathrm{fp}}=\mathrm{K}_{\mathrm{fp}} * \mathrm{~m}_{\text {solute }} & \text { For freezing point depression } \mathrm{K}_{\mathrm{fp}}<\mathrm{o} & \text { is negative }
\end{array}
$$

BP and FP effects involve IONS. When solutions contain ions (KCl in water gives K^{+}and Cl^{-}), the total concentration of solute particles is used. This is the Van't Hoff Factor (i)

$$
\Delta \mathrm{T}_{\mathrm{bp}}=\mathrm{K} * \mathrm{~m}_{\text {solute }} * \mathrm{I} \quad \mathrm{I} \text { is the number of ions }
$$

Compound		$\underline{\text { In Solution }}$		Type	$\underline{\mathbf{i}}$
$\mathrm{CH}_{3} \mathrm{OH}$			molecular	$\mathbf{1}$	
NaCl	$\mathrm{CH}_{3} \mathrm{OH}$			strong electrolyte	2
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{Na}^{+} \mathrm{Cl}^{-}$	$\mathrm{Ba}^{2+} 2 \mathrm{NO}_{3}^{-}$		strong electrolyte	3
HNO_{2}	$\mathrm{H}^{+} \mathrm{NO}^{-}$		weak electrolyte	$1-2$	

Problem:

If 52.5 g of LiF is dissolved in 306 g of water, what is the expected freezing point of the solution? (Assume the van't Hoff factor, i , for LiF is 2.)

$$
\begin{array}{lll}
1 \mathrm{Li} & 1{ }^{*} 6.941 & 6.941 \\
1 \mathrm{~F} & 1{ }^{*} 19.00 & \underline{19.00}
\end{array}
$$

$$
25.941=25.94 \mathrm{~g} / \mathrm{mole}
$$

Molality $=\mathrm{m}=\mathrm{moles} / \mathrm{kg}$ solvent $=(52.5 \mathrm{~g} / 25.94 \mathrm{~g} / \mathrm{mole}) / 0.306 \mathrm{~kg}=6.6140=6.61 \mathrm{moles}$
$\Delta \mathbf{T}_{\mathrm{fp}}=\mathrm{K}_{\mathrm{fp}}{ }^{*} \mathrm{~m}_{\text {solute }}{ }^{*} 2=-1.86^{\circ} \mathrm{C} / \mathrm{m}^{*} 6.61$ moles $* 2=-24.589=-\mathbf{2 4 . 6}{ }^{\circ} \mathbf{C}$

Molar Mass by Boiling Point Elevation

Problem:
Benzyl acetate is one of the active components of oil of jasmine. If 0.125 g of the compound is added to 25.0 g of chloroform $\left(\mathrm{CHCl}_{3}\right)$, the boiling point of the solution is $61.82{ }^{\circ} \mathrm{C}$. What is the molar mass of benzyl acetate? Note: K_{bp} for CHCl_{3} is $+3.63^{\circ} \mathrm{C} / \mathrm{m} \quad \mathrm{Bp} \mathrm{CHCl} \mathrm{C}_{3}=61.70^{\circ} \mathrm{C}$

1. Solution: The molality of the solution can be found from the BP elevation.
2. Knowing molality and mass of solvent, one can find the moles of solute.
3. Knowing mass and moles of solute, the molar mass of the compound can be determined. Answer is $150 \mathrm{~g} / \mathrm{mol}$ PROVE IT.
$\Delta \mathrm{T}_{\mathrm{bp}}=\mathrm{K}_{\mathrm{bp}} * \mathrm{~m}_{\text {solute }}$ therefore
$\mathrm{m}_{\text {solute }}=\Delta \mathrm{T}_{\mathrm{bp}} / \mathrm{K}_{\mathrm{bp}}=\left(61.82^{\circ} \mathrm{C}-61.70^{\circ} \mathrm{C}\right) /+3.63{ }^{\circ} \mathrm{C} / \mathrm{m}=0.12^{\circ} \mathrm{C} /+3.63{ }^{\circ} \mathrm{C} / \mathrm{m}=0.033 \mathrm{~m}$
$\mathrm{m}_{\text {solute }}=$ moles $_{\text {solute }} / \mathrm{kg}$ solvent $=\mathrm{g}_{\text {solute }} /\left(\mathrm{Mw}_{\text {solute }}{ }^{*} \mathrm{~kg}_{\text {solvent }}\right)$
Derive
$\mathbf{M w}$ solute $=\mathrm{g}_{\text {solute }} /\left(\mathrm{m}_{\text {solute }}{ }^{*} \mathrm{~kg}\right.$ solvent $)=0.125 \mathrm{~g} /(0.033 \mathrm{~m} * 0.025 \mathrm{~kg})=151.5=\mathbf{1 5 0} \mathbf{g} / \mathbf{m o l e}$
Osmotic Pressure is the movement of solvent molecules through a semi permeable membrane from a region of lower solute concentration to a region of higher solute conc.

The point where they have equal osmotic pressure, they are Isotonic.
Examples: Bag with 5\% sugar in pure water (see below)
Reverse Osmosis for water purification

Osmotic Pressure II = $\mathbf{c}($ molar conc in moles per 1$) * \mathbf{R}$ * \mathbf{T} $\mathrm{R}=0.082057 \mathrm{~L}$ atm $/ \mathrm{mol} \mathrm{K}$

A dilute solution of $1.00 \times 10^{-3} \mathrm{M}$ at 298 K has II of 18.5 mm Hg PROVE IT!
$\mathrm{II}=\mathrm{c}^{*} \mathrm{R}$ * $\mathrm{T}=1.00 \times 10^{-3} \mathrm{M} * 0.082057 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K} * 298=0.0244 \mathrm{~atm}$
0.0244 atm * $760 \mathrm{~mm} \mathrm{Hg} / \mathrm{atm}=18.6 \mathrm{~mm} \mathrm{Hg}$

EXAMPLE 14.7 II of solution of polymer. 18.44 g polyvinyl alcohol mass 28,000 in water to give 150 ml . What is II

Answer $=\mathrm{II}=8.2 \mathrm{~mm} \mathrm{Hg}=110 \mathrm{~mm}$ water $=4.33$ "

EXAMPLE 14.9 Osmotic Pressure and Molar Mass

You need to be able to do this problem and understand what it's all about!

14.5 Colloids

A colloid is a state of matter intermediate between a solution and a suspension, the solute particles are large enough to scatter light but too small to settle out.

Colloids usually have high molar masses and the particles are large (1000 nm in dia).
Tyndall Effect scatters visible light when dispersed in a solvent

Sol is a colloidal dispersion of a solid in a fluid
Gel is a colloidal dispersion that has a structure that prevents it from being mobile - JELL-O

Colloidal dispersions are finely divided particles and have a very high surface area
Hydrophobic - colloids in water
Emulsion is a colloidal dispersion of one liquid in another liquid (oil in water)
Emulsifying agent is a compound that helps form an emulsion

Table 14.5 Types of Colloids

Type	Dispersing Medium	Dispersed Phase	Examples
Aerosol	Gas	Liquid	Fog, clouds, aerosol sprays
Aerosol	Gas	Solid	Smoke, airborne viruses, automobile exhaust
Foam	Liquid	Gas	Shaving cream, whipped cream
Foam	Solid	Gas	Styrofoam, marshmallow
Emulsion	Liquid	Liquid	Mayonnaise, milk, face cream
Gel	Solid	Liquid	Jelly, JELL-0®, cheese, butter
Sol	Liquid	Solid	Gold in water, milk of magnesia, mud
Solid sol	Solid	Solid	Milkglass

Surfactants \quad Soaps and detergents are emulsifying agents

A surfactant affects the property of surfaces,
Affects the interaction between 2 phases

A Surfactant used for cleaning is called a detergent.
Ca^{2+} and Mg^{2+} from hard water forms the insoluble bathtub rings or gray clothing.

